綠色熒光蛋白GFP吸收的光譜峰值為395nm(紫外),并有一個峰值為470nm的副吸收峰(藍光);雖然450~490nm只是GFP的副吸收峰,但由于長波能量低,細胞忍受能力強,更適合活體檢測,因此通常多使用藍光波段光源(多為488nm)。GFP發(fā)射光譜最大峰值為509nm(綠光),并帶有峰值為540nm的側峰(Shouder)。深圳熒鴻專注熒光蛋白激發(fā)光源研發(fā),有單波段紫外、藍光激發(fā)光源,也有紫外+藍光雙波長激發(fā)光源,詳情咨詢:0755-89233889!
拓展:
熒光蛋白GFP發(fā)光原理
熒光蛋白發(fā)光類型屬于斯托克斯位移型,其基本原理是生色團在較高能量的光子照射下發(fā)生構象的改變,從而導致分子能級變化,從高能級的構象躍遷向低能級時發(fā)出較低能量的光子。生色團在發(fā)光過程中主要有兩種化學過程。一是質(zhì)子轉移,即質(zhì)子化和去質(zhì)子化,二是分子構象的改變。生色團主要有三種構象:A型、B型以 及中間過渡態(tài)Z 型。在分子構象變化的同 時還伴隨著氫鍵的生成和斷裂,以及電荷的傳遞去質(zhì)子化和質(zhì)子化的分子構象不同, 對應的分子能級也不同,從而其發(fā)射光譜中有兩個特征峰,代表兩種躍遷過程。質(zhì)子化構象生色基團通過Tyr66 的脫質(zhì)子狀和質(zhì)子化狀態(tài)(酚羥基)的轉換決定熒光發(fā)射。由于酚的激發(fā)態(tài)酸性遠大于其基態(tài), 故僅脫質(zhì)子態(tài)的結構發(fā)射熒光。這個過程是十分迅速的,因此熒光蛋白發(fā)射的是熒光而不是磷光,需要激發(fā)光源持續(xù)存在才可連續(xù)發(fā)光。但是其極快的激發(fā)響應使得熒光蛋白適合作為高靈敏度生物探針以及生物成像材料。
熒光蛋白GFP發(fā)光特性
GFP熒光極其穩(wěn)定,在激發(fā)光照射下,GFP抗光漂白(Photobleaching)能力比熒光素強,特別是在450~490nm藍光波長下更穩(wěn)定。在熒光顯微鏡下,GFP融合蛋白的熒光靈敏度遠比熒光素標記的熒光抗體高,抗光漂白能力強,因此更適用于定量測定與分析。由于GFP熒光的產(chǎn)生不需要任何外源反應底物,因此GFP作為一種廣泛應用的活體報告蛋白,其作用是任何其它酶類報告蛋白無法比擬的。但因為GFP不是酶,熒光信號沒有酶學放大效果,因此GFP靈敏度可能低于某些酶類報告蛋白,比如熒光蛋白的應用非常的廣泛,已經(jīng)應用于分子標記,體內(nèi)示蹤,信號轉導,藥物篩選等生物科研的各個方面熒光讓我們能夠檢測分子的構象變化,也能讓我們追蹤化學反應…. 是科學研究的重要手段之一。